The Voltammetry of Sc₃@C₈₂

Mark R. Anderson,* Harry C. Dorn, Steven Stevenson, Paul M. Burbank, and James R. Gibson

> Department of Chemistry Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0212

> > Received August 23, 1996

Many endohedral metallofullerenes have a C82 cage surrounding the metals, even though the normal arc-vaporization method of fullerene preparation does not generate C_{82} in significant abundance.^{1–10} Manolopous *et al.*^{11–13} attribute the low abundance of empty-cage C_{82} to the unfavorable electron configuration of this species. Consequently, the prevalence of C₈₂ in metallofullerenes may be the result of an electron transfer from the encapsulated metal atoms to the fullerene cage.¹⁰⁻¹³ The extent of this charge transfer also contributes to the properties (e.g. catalytic, superconductive, nonlinear optical, and ferromagnetic) that are attributed to the endohedral metallofullerenes.^{14,15} Because of the importance of the charge transfer reaction, characterization of metallofullerenes by spectroscopy and electrochemistry is an active area of research.¹⁻¹⁶ Only recently, however, have sufficient quantities of pure metallofullerenes and C_{82} been available for investigations of this type.^{3–5,16–20} Here, we report the square-wave voltammetry of $Sc_3@C_{82}$ in pyridine and find that it resembles that for La@C₈₂ and $Y@C_{82}$,³⁻⁵ but $Sc_3@C_{82}$ transfers more electrons to the cage than the monometallic endohedral metallofullerenes (MMF's).

- (1) Weaver, J. H.; Chai, Y.; Kroll, G. H.; Jin, C.; Ohno, T. R.; Haufler, R. E.; Guo, T.; Alford, J. M.; Conceicao, J.; Chibante, L. P. F.; Jain, A.;
- R. E., Guö, T., Anord, J. M., Concerca, S., Chibante, E. T. T., Jam, A.,
 Palmer, G.; Smalley, R. E. Chem. Phys. Lett. **1992**, 190, 460–464.
 (2) Shinohara, H.; Yamaguchi, H.; Hayashi, N.; Sato, H.; Ohkohchi, M.;
 Ando, Y.; Saito, Y. J. Phys. Chem. **1993**, 97, 4259–4261.
 (3) Suzuki, T.; Maruyama, Y.; Kato, T.; Kikuchi, K.; Achiba, Y. J. Am.
- (b) Suziki, 1.; Madyana, 1.; Kao, 1.; Kikucin, K.; Acinba, T. J. Am.
 Chem. Soc. **1993**, *115*, 11006-11007.
 (4) Yamamoto, K.; Funasaka, H.; Takahashi, T.; Akasaka, T.; Suzuki, T.; Maruyama, Y. J. Phys. Chem. **1994**, *98*, 12831-12833.
- (5) Kikuchi, K.; Nakao, Y.; Suzuki, S.; Achiba, Y.; Suzuki, T.; Maruyama, Y. J. Am. Chem. Soc. **1994**, 116, 9367–9368. (6) Johnson, R. D.; de Vries, M. S.; Salem, J.; Bethune, D. S.; Yannoni,
- C. S. Nature 1992, 355, 239-240.
- (7) Kikuchi, K.; Nakahara, N.; Wakabayashi, T.; Honda, M.; Matsumiya, H.; Moriwaki, T.; Suzuki, S.; Shiromaru, H.; Saito, K.; Yamauchi, K.; Ikemoto, I.; Achiba, Y. *Chem. Phys. Lett.* **1992**, *188*, 177–180.
- (8) Kikuchi, K.; Nakahara, N.; Wakabayashi, T.; Suzuki, S.; Shiromaru, H.; Miyake, Y.; Saito, K.; Ikemoto, I.; Kainosho, M.; Achiba, Y. Nature 1992, 357, 142-145.
- (9) Diederich, F.; Ettl, R.; Rubin, Y.; Whetten, R. L.; Beck, R.; Alvarez, M.; Anz, S.; Sensharma, D.; Wudl, F.; Khemani, K. C.; Koch, A. Science
- 1991, 252, 548-551. (10) Nagase, S.; Kobayashi, K.; Kato, T.; Achiba, Y. Chem. Phys. Lett.
- 1993, 201, 475-480. (11) Manolopous, D. E.; Fowler, P. W. Chem. Phys. Lett. 1991, 187, $1 - \dot{7}$
- (12) Fowler, P. W.; Manolopoulos, D. E. Nature 1992, 355, 428-430. (13) Manolopoulos, D. E.; Fowler, P. W.; Ryan, R. P. J. Chem. Soc., Faraday Trans. **1992**, 88, 1225–1226.
- (14) Beyers, R.; Kiang, C.-H.; Johnson, R. D.; Salem, J. R.; de Vries, M. S.; Yannoni, C. S.; Bethune, D. S.; Dorn, H. C.; Burbank, P.; Harich, K.; Stevenson, S. Nature 1994, 370, 196-199.
- (15) van Loosdrecht, P. H. M.; Johnson, R. D.; de Vries, M. S.; Kiang,
- C.-H.; Bethune, D. S.; Dorn, H. C.; Burbank, P.; Stevenson, S. Phys. Rev. Lett. **1994**, 73, 3415–3418. (16) Burbank, P. M.; Gibson, J. R.; Dorn, H. C.; Anderson, M. R. J.
- Electroanal. Chem., in press.
- (17) Nagase, S.; Kobayashi, K. J. Chem. Soc., Chem. Commun. 1994, 1837-1838.
- (18) Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, N.; Wakabayashi, T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Chem. Phys. Lett. 1993, 216, 67-70.
- (19) Stevenson, S.; Dorn, H. C.; Burbank, P.; Harich, K.; Haynes, J.; Kiang, C.-H.; Salem, J. R.; de Vries, M. S.; van Loosdrecht, P. H. M.; Johnson, R. D.; Yannoni, C. S.; Bethune, D. S. Anal. Chem. **1994**, 66, 2675– 2679
- (20) Stevenson, S.; Dorn, H. C.; Burbank, P.; Harich, K.; Sun, Z.; Kiang, C.-H.; Salem, J. R.; de Vries, M. S.; van Loosdrecht, P. H. M.; Johnson, R. D.; Yannoni, C. S.; Bethune, D. S. Anal. Chem. **1994**, 66, 2680–2685.

Figure 1. Square wave voltammograms of Sc3@C82 and C82 in pyridine containing 0.10 M (n-Bu)₄NClO₄. Voltammetric data were collected using a frequency of 15 Hz, a peak amplitude of 25 mV, and a potential step size of 2 mV. Initial potentials were set at the open circuit potential values for both positive and negative scans. Limited sample size required using a micro-electrochemical cell containing 50 μ L of the pyridine solution.¹⁶

Table 1. Redox Potentials versus Fc⁺/Fc for C₈₂, Sc₃@C₈₂, La@C₈₂, and Y@C₈₂

compd	^{ox} E	^{ox} E	^{ox} E	redE	$^{\rm red}E$	redE	$^{\rm red}E$
C_{82}^{a}				-0.47	-0.80	-1.42	-1.84
$Sc_3@C_{82}^a$		-0.04	-0.32			-1.42	-1.67
$La@C_{82}^{b}$	1.07	-0.07		-0.42		-1.37	-2.26
$Y@C_{82}^{b}$	1.07	0.10		-0.34		-1.34	-2.22

^a The conditions for the voltammetry experiments are as follows: approximately 5×10^{-4} M of the fullerene in pyridine containing 0.10 M (n-Bu)₄NClO₄, a glassy carbon working electrode, Pt wire counter electrode, and an Ag/Ag^+ reference electrode (potentials are converted to a Fc⁺/Fc reference). ^{*b*} Reference 5.

The square-wave voltammetry of $Sc_3@C_{82}$ in pyridine containing 0.10 M (C₄H₉)₄NClO₄ has two reversible oxidation peaks, two reversible reduction peaks, and two shoulders at potentials close to the solvent reduction (Figure 1, Table 1).²¹ The first oxidation peak (-0.32 V vs Fc⁺/Fc) occurs at a potential negative of the oxidation of most fullerenes,²² and negative of the first oxidation of the C₈₂ MMF's.³⁻⁵ The second oxidation (-0.04 V) of Sc₃@C₈₂ occurs at approximately the same potential as the first oxidation of the MMF's. Oxidation of Sc₃@C₈₂ occurs more easily than the oxidation of previously reported fullerenes, corresponding with the expectation that the Sc trimer transfers more electrons to the cage than the MMF's.

The oxidations of $Sc_3@C_{82}$ resemble the voltammetric behavior of the MMF's (Table 1). The first oxidation of $Y@C_{82}$ (0.10 V vs Fc⁺/Fc) and of La@C₈₂ (-0.07 V) is at approximately the same potential as the second oxidation peak of $Sc_3@C_{82}$ (-0.04 V); however, the second oxidation of La@C₈₂

(22) Yang, Y.; Arias, R.; Eshegoyen, L.; Chibante, L. P. F.; Flanagan, S.; Robertson, A.; Wilson, L. J. J. Am. Chem. Soc. **1995**, 117, 7801.

© 1997 American Chemical Society

⁽²¹⁾ Sc₃@C₈₂ was chromatographically purified as described in refs 19 and 20.

(1.07 V) and Y@C₈₂ (1.07 V) is at more positive potentials (at potentials outside of the available potential window for the pyridine solutions) than either of the Sc₃@C₈₂ oxidations. In addition, the second oxidations of La@C₈₂ and Y@C₈₂ are irreversible, while both oxidations of Sc₃@C₈₂ are reversible ($\Delta E_p \approx 70 \text{ mV}$ by cyclic voltammetry). The first oxidation of Sc₃@C₈₂ (-0.32 V) occurs at approximately the same potential as the first reduction of Y@C₈₂ (-0.34 V) and La@C₈₂ (-0.42 V). The correspondence between the oxidations of Sc₃@C₈₂ and the voltammetry of the MMF's suggests a relationship between the molecular orbital energies of these C₈₂ endohedral metallofullerenes.

The first reduction peak of $Sc_3@C_{82}$, at -1.42 V, is negative of the first reduction of the MMF's, but is at approximately the same potential as the second reduction of La@C₈₂ (-1.37 V) and Y@C₈₂ (-1.34 V). The first reduction of $Sc_3@C_{82}$ is closely followed by the second reduction (-1.66 V). The second reduction of La@C82 or Y@C82 is either a simultaneous two-electron process or two closely spaced one-electron processes, $^{3-5}$ similar to the appearance of the Sc₃@C₈₂ voltammogram (the potential difference between the $Sc_3@C_{82}$ reduction peaks is 0.24 V). Prior to the onset of solvent breakdown, two shoulders are found at potentials (-2.17 and-2.29 V) close to the values of the third and fourth reductions of the MMF's.⁴ These features are difficult to determine accurately due to the proximity of the electrolyte reduction. The negative potential of the initial reduction of Sc3@C82 correlates with the expectation that the Sc trimer transfers more electrons to the fullerene cage than the MMF's.

The correspondence of the voltammetry of $La@C_{82}$,^{3,4} Y@C₈₂,⁵ and Sc₃@C₈₂, as discussed above, implies that the molecular orbital energies of these C₈₂ metallofullerenes are similar. Because the oxidation of Sc₃@C₈₂ at -0.32 V occurs at nearly the same potential as the first reduction of La@C₈₂ and Y@C₈₂, the Sc trimer appears to transfer one more electron to the cage than either La or Y during the metallofullerene formation. This interpretation of the voltammetry predicts, therefore, that the product of the first reduction of the MMF's, La@C₈₂⁻ and Y@C₈₂⁻, has the same open shell electron configuration as Sc₃@C₈₂. Consequently, La@C₈₂⁻ and Y@C₈₂⁻ should also be EPR active, as observed with Sc₃@C₈₂.²³⁻²⁷ Our interpretation of the Sc₃@C₈₂ electrochemistry is contrary to that of Suzuki *et al.*,³ who attribute the relative ease of the first reduction of the MMF's to the formation of a closed shell

(27) Yannoni, C. S.; Hoinkis, M.; de Vries, M. S.; Bethune, D. S.; Salem, J. R.; Crowder, M. S.; Johnson, R. D. *Science* **1992**, *256*, 1191–1192.

electron configuration.³ Kadish *et al.*, however, show by combined electrochemistry and EPR spectroscopy that both C_{84}^{-} and C_{84}^{2-} are EPR active.^{28,29} Although not metallofullerenes, these C_{84} anions are isoelectronic with the C_{82}^{3-} and C_{82}^{4-} , the forms of C_{82} postulated for La@ C_{82} and La@ C_{82}^{-} .¹⁰

The potential of the first reduction of $Sc_3@C_{82}$ and the potential of the third reduction of C82 are nearly identical. Ungerer and Hughbanks, using extended Hückel calculations, predict an MO diagram for Sc3@C82 in which two electrons are transferred from the Sc_3 cluster to the C_{82} cage.³⁰ In their MO diagram, a low lying SOMO for the metallofullerene has approximately the same energy as the LUMO for C_{82}^{2-} . These MO diagrams suggest that the first reduction of Sc₃@C₈₂ occurs at nearly the same potential as the reduction of C_{82}^{2-} to C_{82}^{3-} , as observed experimentally (Figure 1). A two-electron charge transfer by the Sc trimer to the cage, however, does not correspond with our interpretation that the formal charge of the Sc trimer is +4 (by analogy to the expected +3 charge for La and Y in the monometallic compounds, and the assumption that each redox process observed in the $Sc_3@C_{82}$ voltammetry involves transfer of only one electron).^{1,3-6} Smalley *et al.* suggest that, for La@C₈₂, two electrons are transferred to the π orbitals of the fullerene cage forming the stable C_{82}^{2-} , and the third electron is delocalized within the carbon cage.¹ The similarity of the voltammetry for Sc3@C82, C82, and La@C82 suggests that formation of Sc3@C82 may also result from delocalization of some of the transferred electron density within the cage instead of complete transfer of all four electrons to the π orbitals of the cage. Delocalized electrons within the cage might also explain the equivalence of the encapsulated Sc trimer.^{22–25} A necessary caveat for comparison of the MMF's and $Sc_3@C_{82}$ voltammetry with that of the empty-cage C_{82} is that all of these fullerenes have the same cage symmetry.²⁹

In summary, we have described the first electrochemical data for a polymetallic endohedral metallofullerene. The voltammetric behavior of $Sc_3@C_{82}$ resembles that for $La@C_{82}$ and $Y@C_{82}$,^{3–5} indicating that the identity of the metal does not influence dramatically the energies of the metallofullerene molecular orbitals.³¹ The three Sc atoms, however, transfer more electrons from the encapsulated metals to the cage than the monometallic counterparts, accounting for the differences in the voltammetry for $Sc_3@C_{82}$. The similarity of the voltammetry of $Sc_3@C_{82}$ with that of the MMF's suggests that $Sc_3^{+4}@C_{82}^{4-}$ may describe the formal charges on the Sc trimer and the C_{82} cage of this species. Metallofullerene electronic structure and physical properties should be better understood as more new metallofullerenes become available for investigation.

JA962963X

⁽²³⁾ Kato, T.; Bandou, S.; Inakuma, M.; Shinohara, H. J. Phys. Chem. 1995, 99, 856–858.

 ⁽²⁴⁾ Suzuki, S.; Kojima, Y.; Nakao, Y.; Wakabayashi, T.; Kawata, S.;
 Kikuchi, K.; Achiba, Y.; Kato, T. *Chem. Phys. Lett.* **1994**, 229, 512–516.
 (25) Kato, T.; Bandow, S.; Inakuma, M.; Shinohara, H.; Hayashi, N.;

⁽²⁰⁾ Rato, 1., Bandow, S.; makuna, W.; Shinonara, H.; Hayashi, N.; Saito, Y. In *Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials*; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Proceeding Series; Electrochemical Society: Pennington, NJ, 1994; pp 1331–1339.

⁽²⁶⁾ Shinohara, H.; Kishida, M.; Nakame, T.; Kato, T.; Bandow, S.; Saito, Y.; Wang, W. D.; Hashizume, T.; Sakurai, T. In *Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials*; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Proceeding Series; Electrochemical Society: Pennington, NJ, 1994; pp 1361–1381.

⁽²⁸⁾ Boulas, P. L.; Jones, M. T.; Ruoff, R. S.; Lorents, D. C.; Malhotra, R.; Tse, D. S.; Kadish, K. M. J. Phys. Chem. **1996**, 100, 7573-7579.

⁽²⁹⁾ Boulas, P.; Jones, M. T.; Kadish, K. M.; Ruoff, R. S.; Lorents, D. C.; Tse, D. S. J. Am. Chem. Soc. **1994**, 116, 9393–9394.

⁽³⁰⁾ Ungerer, J. R.; Hughbanks, T. J. Am. Chem. Soc. 1993, 115, 2054–2055.

⁽³¹⁾ The electrochemistry of Sc@C₈₂ has not been reported; however, Yannoni *et al.* report that the EPR spectrum of Sc@C₈₂ is similar to that of La@C₈₂, suggesting that these species have similar electronic ground state structures (ref 27).